

CIJE-Tech

High School

IoT
The Internet of Things

CENTER FOR
INITIATIVES IN
JEWISH
EDUCATION

Updated for esp32

Includes 2 complete codes

The Center for Initiatives in Jewish Education

(CIJE)

The Center for Initiatives in Jewish Education (CIJE) strengthens and enriches the quality of
education in Jewish schools throughout the United States. CIJE is investing in our nation's future
by providing beneficiary schools with cutting-edge technology, engaging curricula, and vital
support so that students can acquire the skills they need to excel in our global society. Currently,
CIJE has more than 225 beneficiary schools across the United States and programs which span
grades K-12. CIJE's innovative programs are paving the way for the achievement and success of
tomorrow's leaders and thinkers.

CIJE-TECH STEM PROGRAM: AN OVERVIEW

More than ten years ago, the Center for Initiatives in Jewish Education began the implementation
of various STEM programs in elementary Jewish schools. The success of these programs brought
about the initiation of the CIJE-Tech Principles in Engineering and Applied Engineering programs.

Goals:

The CIJE STEM education programs:

• Provides a challenging and rigorous program of study focusing on the application of STEM
subjects.

• Offers courses and pathways for preparation in STEM fields and occupations.

• Bridges and connects in-school and out-of-school learning opportunities.

• Provides opportunities for student exploration of STEM related fields and careers.

• Prepares students for successful college and university STEM education.

To increase STEM learning, the CIJE-Tech programs include activities that improve student and
teacher content knowledge and teacher pedagogical skills. Innovative strategies are used,
including small group collaborative work and the use of hands-on activities and experiments to
promote inquiry and curiosity. Learning is connected to the real world through an emphasis on
the application of STEM subjects to everyday life, employment, and the surrounding
environment.

The CIJE high school programs were approved as "d" Laboratory Science Courses by the
University of California in 2015. The second-year course is approved at the more
challenging honors level.

Center for Initiatives in Jewish Education

President Jason Cury

Vice President, Professional Development Faigy Ravitz

Director, Curriculum Development Adam Jerozolim, M.E.

Coordinator, Innovative Programs Orly Nadler, M.A.

CIJE STEM Specialists:

Christopher Auger-Dominguez Katherine Owuor, Ph,D.

Dewain Clark, M.A. Joseph Saltzman

Robert Jones David Seay, M.A.

Yafa Lamm Barbara Sehgal, M.A.

Aryeh Laufer

© 2025 All Copyrights belong to Center for Initiatives in Jewish Education. No part of this book
may be copied, duplicated, recorded, translated or stored in any database of any kind or by any
other means. Any use of the material contained in this book is prohibited unless it is with the
express permission of the publishers and authors.

Center for Initiatives in Jewish Education
148 39th Street, Suite A311, Brooklyn, NY, 11232
info@theCIJE.org
212-757-1500 Phone
212-757-1565 Fax

This program was produced with the generous support of the Center for Initiatives in Jewish
Education (CIJE) as part of its ongoing quest to achieve excellence in education.

“When we talk about the Internet of Things, it’s not just putting
RFID tags on some dumb thing so we smart people know where
that dumb thing is. It’s about embedding intelligence, so things
become smarter and do more than they were proposed to do.”

– Nicholas Negroponte

 Founder, MIT’s Media Lab

Table of Contents
INTRODUCTION ... 7

INTERNET NETWORKS .. 7

STATIONS ... 7
SERVERS ... 8
CLIENTS .. 9
CLIENT SECURE .. 9

FINDING YOUR DEVICE... 10

INTERNET PROTOCOL (IP) ADDRESS ... 10
LOCAL AREA NETWORK (LAN) ... 10
SUMMARY .. 11
LIMITED IP ADDRESSES .. 12

SECURITY ... 13

HOW IT WORKS .. 13
IOT AND SECURITY.. 14
AWARENESS .. 14

ESP32 ... 16

INTRODUCTION .. 16
ESP32 VS ARDUINO UNO ... 16
CODING MICROCONTROLLERS WITH THE ARDUINO IDE .. 17
SETTING UP THE ARDUINO IDE FOR CODING .. 17

HTTP .. 19

STANDARDIZING COMMUNICATION ... 19

HTML – BUILDING A WEBSITE .. 20

TAGS ... 20
WRITING HTML IN ARDUINO ... 23
DISPLAY ANALOGREAD DATA ON WEBSITE .. 23
DISPLAY “BUTTON STATE” ON A WEBSITE ... 24
TURNING ON A LIGHT WITH A “BUTTON” ... 24
FULL EXAMPLE CODE - POSTING INFORMATION ON A WEBPAGE .. 25
FULL EXAMPLE CODE - CONTROLLING ARDUINO FROM A WEBPAGE .. 26

 IoT

CIJE | Introduction 7

Introduction

The esp32 is a low-cost microcontroller, similar to Arduino, that has Wi-Fi capability built in. The
chip is a fully functional processor, and in most ways, superior to the Arduino Uno. The Wi-Fi
capabilities of the esp32 comes from a compact Wi-Fi antenna built right onto the chips silicon
wafer. The chip comes with its own digital and analog pins. Various 3rd party breakouts boards
can be used to access these pins and adds features to make the chip more useable; similar to
the same way the Arduino UNO provides access to the Atmel chip in its center.

Internet Networks

Stations

Devices that connect to Wi-Fi network are called stations
(STA). The source of the Wi-Fi is provided by an access point
(AP), that acts as a hub for one or more stations.

An access point is usually integrated with a router to
provide access to the internet. The access point is
recognized by a SSID (Service Set Identifier), that essentially
is the name of network you select when connecting a device
(station) to the Wi-Fi.

When the esp32 acts as an access points for other stations,
since it is not wired to the internet, it is called a soft access
point (soft-AP). Therefore, we can connect other stations to
the esp32 to make a localized network, but none of the
devices on the network will receive internet access through
the network.

Devices that connect to a
network are called stations

An Access Point serves as a
bridge for Stations to connect

to the internet

An Access Point that is not
connected to the internet is

called a Soft Access Point

IoT

8 Internet Networks | CIJE

Servers

Servers provide functionality to other stations on a
network. They might provide pieces of information,
news, access to email, movies, databases, etc. A station
(also referred to as a client) connects to servers to send
and receive data.

A device that connects
stations, but cannot supply
internet access to them, is
called a Soft Access Point

Servers are devices on a network
that provide the functionality and

data to the stations (clients).

 IoT

CIJE | Internet Networks 9

Clients

Some stations on a network are referred to as
clients. Clients can access services provided by
servers in order to send, receive and process data.

Client Secure

The Client Secure is a type of client, whereas the
connection and data exchange with a server is done using
a secure protocol. This prevents anyone from having
access to the information that is shared between the
client and the server. Secure applications have additional
memory (and processing) overhead due to the need to run cryptography algorithms. The
stronger the certificate’s key, the more overhead is needed.

A client is a device on a network that
can access, send, and receive data

from a server on the network

Clients can interact with each
other, and servers on the

network, using encryption well.

IoT

10 Finding your Device | CIJE

Finding your Device

 Internet Protocol (IP) address

When computers and devices and servers
are all linked together they form a network.
Each device on a network has an address,
called an Internet Protocol Address, or IP
for short. These addresses are how
information is directed to the correct
device.

Being there are only a limited number of global IP addresses (there are more devices in the world
than addresses), each network only gets one global IP. Since your network can have multiple
devices within it, like laptops and phones, the router’s job is to assign each device a local IP
address, one that the outside world cannot see. The router uses these local addresses to
distribute the data to the correct device within the network.

So all the data is sent to your networks global IP address. The router then divides it up and
distributes it accordingly using the internal local IP addresses.

Local Area Network (LAN)

It is also possible for a network of devices to exist independent of the internet. This could
happen, for instance, if the internet connected to your house went down. The internal devices
would still be able to communicate with each other using their local IP addresses, there would
just be no global IP address associated with the router. This might also be done purposely when
a secure network (e.g. – computers within the stock exchange) or a fast network (e.g. – gaming)
is required.

Each device on a network is given a local address,
called a local IP, to be used internally.
The network as a whole also receives a single IP
address, called a Public IP Address, for the rest of
the world to locate them.

 IoT

CIJE | Finding your Device 11

Summary

The internet Service Provider (ISP) provides an address for each network, referred to as the
global IP. Your local router provides a unique local IP address to each device. Data is received
by your router using the global IP address, and is then distributed internally using the local IP
addresses.

Each device can have two separate IP addresses, a local and a global. A local IP is assigned from
your local network router (i.e. – the box in the closet). The global IP is assigned by your Internet
Service Provider (ISP) (i.e. – Verizon, comcast, cable, etc.).

So each device within a network has a local IP address, but shares a global IP address. The
devices are differentiated on the global network by the ports that they are assigned. The port
number is usually listed after the IP address.

Local IP –> 192.168.0.3
Global IP –> 173.2.464.54

Local IP –> 192.168.0.4
Global IP –> 173.2.464.54

Server (ESPN.com)
Global IP – 176.23.54.96

Home Router

Receives all data using the
Global IP, and assigns local IP

addresses to each device

Server (Google.com)
Global IP – 142.76.84.22

Local IP –> 192.168.0.5
Global IP –> 173.2.464.54

Local IP – 192.168.0.3
Global IP – 173.2.464.54

Local IP – 192.168.0.4
Global IP – 173.2.464.54

Server (ESPN.com)
Global IP – 176.23.54.96

Server (Google.com)
Global IP – 142.76.84.22

Local IP – 192.168.0.5
Global IP – 173.2.464.54:9

Home Router

IoT

12 Finding your Device | CIJE

Limited IP addresses

IP version 4 contains four 8-bit numbers (0-255). This leads to a limited number of potential
addresses

=> 255 x 255 x 255 x 255
=> 2554

= 4,228,250,625
(approx. 4.3 billion)

Since 2016 there has already been more than 20 billion devices connected to the internet. This
includes every computer, laptop, smartphone, smartwatch, smart appliances, cars, airplanes, etc.

To cope with this growth, IP version 6 was created with eight 16-bit numbers. This leads to many
more combinations of IP addresses.

 IoT

CIJE | Security 13

=> 216 x 216 x 216 x 216 x 216 x 216 x 216 x 216
=> (216)8
=> 2128
= 340,282,366,920,938,000,000,000,000,000,000,000,000

Security

In general, when two devices talk over a network they encrypt their data, making it virtually
impossible for someone to read that data, or infuse their own data into either device.

The data remains encrypted the entire time it is being transferred from the sender to the
receiver.

How it works

A device that wants to receive data creates a set of two keys. Although different, they operate
in tandem so that one key can “lock” the data while the other can “unlock” it. The “locking” key
is made public, so that anyone can encrypt, i.e. – lock, data they wish to send over. They data is

IoT

14 Security | CIJE

then sent over a network. Even if someone were to intercept the data, they would not be able
to open it since the “unlock” key remains private. Since the two keys are different, just having
the public “locking” key will not help you create an “unlocking” key. Once the data is received by
the recipient, they can use the corresponding “unlock” key to decrypt the data.

The above example merely touches on the basics of data encryption. There are many more
aspects of data encryption such as the size and complexity of the ‘keys’, the amount of keys,
encrypting the encryption keys, private “locking” keys, etc.

What is important to take away is that encryption involves constantly running complex
algorithms on all data coming into and out of a device to simultaneously encrypt and decrypt
data. It also involves a complete and universally accepted standard for how to encrypt and
decrypt data. Every device on a network must be designed to use the same system and
processes.

IoT and Security

With the sudden and quick growth of internet connected devices, there is a tremendous lack of
security in IoT related devices. The main reasons for this include:

• Devices want to be able to talk to all other devices, and no standard protocol for security
has been setup

• To ease the process of connecting a device to a network, the cost and setup associated
with security is often pushed to the side

• To keep the costs and sizes of devices down, smaller and simpler processors are being
used. Encryption requires a significant amount of additional memory and processing to
enable their cryptographic algorithms.

Awareness

We are living in a time where devices are being connected to the internet as unpreceded rates.
This opens up new avenues for hackers to gain access to these devices an use them in nefarious
ways.

 IoT

CIJE | Security 15

Some examples of insecure IoT devices being hacked include

• In 2016, the largest DDoS (Distributed Denial of Service, where high amounts of devices
attempt to contact a server at one time, overloading and shutting it down) attack was
launched on service provider Dyn, using a swarm of IoT devices. This lead to huge
portions of the internet going down, including Twitter, the Guardian, Netflix, Reddit, and
CNN. The devices infected included things like digital cameras and DVR players.

• IoT devices, like pacemakers and defibrillators, are used to monitor and control patients’
heart functions and prevent heart attacks. A vulnerability occurred in the transmitter that
reads the device’s data and remotely shares it with physicians. The FDA said hackers could
control a device by accessing its transmitter. Once in, they could deplete the battery or
administer incorrect pacing or shocks.

Often we find ourselves in situations where data encryption is either not yet available or not yet
implemented. Even in situations where the transfer of data is encrypted, the storage and end
user for the data is not encrypted. For example, when sending an email using Gmail, the transfer
of the data is encrypted, but once the email resides on Gmail’s servers, it is no longer encrypted.
This allows the owner of the server to have access to your data. This is common in almost all
large online tech companies, including amazon, google, etc. While not necessarily a bad thing, it
is important to keep in mind who has access to your data when you share it over the internet.
And while we trust some large firms to keep our data secure, there are also many smaller
companies that we entrust that do not have the resources to secure our data e.g. – a small
doctor’s office, small online retailer, online registration for local events, etc.

IoT

16 esp32 | CIJE

esp32
Introduction

The esp32 is a microcontroller designed to be an Internet of Things (IoT) platform.

 + =

The esp32 is programmed using the
Arduin IDE and is very similar to coding a
regular Arduino Uno. However, due to its
small size, attaching circuitry can be
difficult. To facilitate project
development, many esp32 breakout
boards have been created, very similar to
the Arduino family or circuit board.

This curriculum will focus on the Acebott breakout version of the esp32, a board designed to be
very similar to the standard Arduino Uno.

esp32 vs Arduino Uno

 esp32 Arduino

Vin 7 – 15v 7 – 12v

analogRead 15 pins @ 0 - 3.3v 6 pins @ 0 – 5v

analogRead Values 0 - 4095 0 - 1025

Digital pins 25 @ 3.3v 14 @ 5v

Max Digital Pin Current 40mA 20mA

analog Write 2 PWM pins: 25 and 26 6 PWM pins: 3, 5, 6, 9, 10, 11

Built in LED D2 D13

https://en.wikipedia.org/wiki/Internet_of_Things

 IoT

CIJE | esp32 17

Coding microcontrollers with the Arduino IDE

The Arduino IDE is a versatile compiler, meaning it takes code written in one language and
converts it into another. In most cases it is taking high level code written in text and compiling it
into binary coding for a microcontroller to use. Although we generally code Arduino boards using
the Arduino IDE, we can set up the Arduino IDE to compile code for a variety of microcontrollers.
In this case we will set up the Arduino IDE to code the esp32 microcontroller.

Setting up the Arduino IDE for coding
We can use the familiar Arduino IDE to code the esp32, even though it is not an Arduino board.

1. Go to File → Preferences.

2. Select the “Additioanl URL’s” icon in the corner.

The following 7 steps must be performed to configure the Arduino IDE to code the esp32

IoT

18 esp32 | CIJE

3. Add the following URL’s to the board manager:

http://arduino.esp8266.com/stable/package_esp8266com_index.json
https://www.arduino.me/package_esp32_index.json

4. Select OK until you return to the Arduino main screen.

5. Search for “esp32”
in the BOARDS
MANAGER’s search
bar and install it.

6. After installation is
complete, close and
reopen the Arduino
IDE.

7. Select Tools → Board → esp32 → esp32 Dev Module

You’re ready to code the esp32 using the Arduino IDE!

Note: You can increase the uploaed speed under the tools menu if you are not experinceing any
upload errors.

In some cases where the board is not recognized, and additoanl driver may need to be installed:

Windows: https://acebottteam.github.io/acebott-docs-
master/getting%20started/Arduino/Download%20CH340%20Driver%20on%20Windows
%20System.html

Mac: https://acebottteam.github.io/acebott-docs-
master/getting%20started/Arduino/Download%20CH340%20Driver%20on%20MAC%20
System.html

https://acebottteam.github.io/acebott-docs-master/getting%20started/Arduino/Download%20CH340%20Driver%20on%20Windows%20System.html
https://acebottteam.github.io/acebott-docs-master/getting%20started/Arduino/Download%20CH340%20Driver%20on%20Windows%20System.html
https://acebottteam.github.io/acebott-docs-master/getting%20started/Arduino/Download%20CH340%20Driver%20on%20Windows%20System.html
https://acebottteam.github.io/acebott-docs-master/getting%20started/Arduino/Download%20CH340%20Driver%20on%20MAC%20System.html
https://acebottteam.github.io/acebott-docs-master/getting%20started/Arduino/Download%20CH340%20Driver%20on%20MAC%20System.html
https://acebottteam.github.io/acebott-docs-master/getting%20started/Arduino/Download%20CH340%20Driver%20on%20MAC%20System.html

 IoT

CIJE | HTTP 19

HTTP

Standardizing Communication

HTTP stands for HyperText Transfer Protocol. This is a basis for data communication on the
internet. The data communication starts with a request sent from a client (e.g. – your computer)
and ends with the response received from a web server (e.g. – google.com). Each time two
computers communicate with each other using the HTTP protocol, a simple sequence is followed.

1. A website URL starting with “http://”
is entered in a web browser from
a computer (client). The browser
can be a Chrome, Firefox,
Edge, Safari, Opera or
anything else.

2. Browser sends a request to
the web server
that hosts the website.

3. The web server then returns a
response as a HTML page or any
other document format to the browser.

4. Browser displays the response from the server to the user.

The HTTP protocol requires a minimum of information to ensure consistent communication. The
HTTP request might contain:

o The version of the HTTP protocol your computer is using

o The name of the website it would like to see

o The page within the website it’s looking for

The HTTP response might contain:

o Confirmation that the message was received

o Time and date of the response

o Language and protocol that the website is coded in

o Followed by the actual content of the website

https://www.webnots.com/types-of-web-hosting/
https://www.webnots.com/learn-html-basics/
https://img.webnots.com/2013/06/HTTP-Request-and-Response-Over-Web-1.png

IoT

20 HTML – Building a Website | CIJE

HTML – Building a Website

Tags

Like Arduino and its loops, HTML uses sections indicated by tags between angle brackets < >. The
opening and closing tags are the same, except the closing tag has a forward slash (/) in it.

<html> <head> <body>

The entire code is contained within <html> tags, with two subsections, <head> and <body>. The
basic tag structure of a website looks like this:

<html>

 <head>

 </head>

 <body>

 </body>

</html>

Things that do not appear on the page are placed between the <head> tags. Things that are to
be visible on the web page, or apply to the web page content, are placed between the <body>
tags.

 IoT

CIJE | HTML – Building a Website 21

<title>

The title tag, <title>, is placed in the <head> section of the HTML page and will display text in the
top bar of the web browser. This tag is intended to display the web page title.

<html>

 <head>

 <title> Center for Initiatives in Jewish Education </title>

 </head>

 <body>

 </body>

</html>

<h1> <p>

The text of the website goes between the <body> tags. The format of the text is controlled using
the headings tags, e.g.: <h1>, or the standard paragraph tag, <p>. Any text typed between these
tags will be formatted accordingly.

Below is an example code demonstrating different heading and paragraph tags:

Website Code

For example:
Code placed between the
<h2> and </h2> tags will

be formatted like a second
level header

IoT

22 HTML – Building a Website | CIJE

An example of different format types used in a webpage:

<!DOCTYPE html>

<html>

 <head>

 <title> Testy Web Page </title>

 </head>

 <body>

 <h1> Hello from Arduino! </h1>

 <p> A web page from the Arduino server </p>

 </body>

</html>

<a> (links)

The <a> tag is used to insert a link in your html webpage. The link will update the URL, or address
of the page you are on. It can contain a completely new URL, and thus forward you to a new site,
or simply amend your current URL, keeping you on the same page, but with a slightly different
URL.

➢ All the information fits within the <a> tags

➢ The href= portion contains what the link will update the URL to. Note that this
information is contained within the opening <a> tag.

➢ The information between the tags is what is displayed on the site

o To display a clickable button on the site, you can use the <button> tag, with the
information between the tags the actual words that will appear on the button

 <button> click here for wikipedia </button>

`

 IoT

CIJE | HTML – Building a Website 23

Tags Summary

Writing HTML in Arduino

In order to host the server on your esp32, we need to follow certain syntax developed by the
esp32 library. All HTML coding must be within one single string. We can use the html+= to
continuously code and add each line the string, and then send that string to the browser.

String html = "<!DOCTYPE html>"; //web page is made using HTML

html += "<html>";

 html += "<head>";

 html += "<title> Ethernet Tutorial </title>";

 html += "</head>";

 html += "<body>";

 html += "<h1> A Webserver Tutorial </h1>";

 html += "<h2> Observing State Of Switch </h2>";

 html += "<h2> Switch is: </h2>";

 if (digitalRead(8)) {

 html += "<h3> ON </h3>";

 }

 else {

 html += "<h3> OFF </h3>";

 }

 html += "</body>";

html += "</html>";

Display analogRead Data on Website

The following example, when placed in the <body> tags, will display the output from the
analogRead pin on your website.

int sensorReading = analogRead(A0);

html += "analog input is";

html += String(analogRead(39));

When using the Arduino IDE, All
HTML coding must be added to

one long string variable

IoT

24 HTML – Building a Website | CIJE

Display “Button State” on a website

The following code would print different text on the website based on a button press:

NOTE: The HTML is incorrectly formatted as it’s not within the String html command

<!DOCTYPE html> //web page is made using HTML

<html>

 <head>

 </head>

 <body>

 <h1>A Webserver Tutorial </h1>

 <h2>Observing State Of Switch</h2>

 <h2>Switch is: </h2>

 if (digitalRead(8)== HIGH) {

 <h3> ON </h3> }

 else {

 <h3> OFF </h3> }

 </body>

</html>

Turning on a light with a “button”

The following example, when placed in the
<body> tags, will append the URL of your site
with either an “LED=ON” or “LED=OFF” when one
of the buttons are pushed

 html += "<html>";

 html += "Led pin is now: ";

 if (value == HIGH)

 html += ("On");
 else

 html += ("Off");

 html += ("

");

 html += ("<button>Turn On </button>");

 html += ("<button>Turn Off </button>
");

 html += ("</html>");

The example code on the following pages will discuss how to operate the LED based on the
updated URL suffixes.

IMPORTANT: when coding, a backslash \ must precede any “ within the <a>
tags for Arduino

`

 IoT

CIJE | HTML – Building a Website 25

Full Example Code - Posting information on a webpage

#include <WiFi.h>

const char* ssid = "enter between quotes";

const char* password = "enter between quotes";

WiFiServer server(80);

void setup() {

 Serial.begin(9600);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("WiFi connected");

 server.begin();

 Serial.println("Server started");

 Serial.print("The URL to connect: http://");

 Serial.print(WiFi.localIP());

 Serial.println("/");

}

void loop() {

 // Check if a client (browser) has connected

 WiFiClient client = server.available();

 if (!client) {

 return;

 }

if (client && client.connected()) {

 String html = "HTTP/1.1 200 OK\r\n";

 html += "Content-type:text/html\r\nConnection: close\r\n\r\n";

 html += "<!DOCTYPE html>";

 html += "<html>";

 html += "<head><meta http-equiv='refresh' content='3'></head>";

 html += "<body>";

 html += "<h1>";

 html += "Analog Value: ";

 html += String(analogRead(39));

 html += "</h1>";

 html += "</body>";

 html += "</html>";

 client.print(html);

 client.stop();

 }

 }

Enter the username and password for the Wi-Fi
network you will be using

If your network assigns a “port” to each device,
enter the port your Arduino is on here. By

default, all “servers” are set to 80

While the Wifi is NOT connected, the Arduino will
print dots on the screen until the connection is

established

The esp32 is “hosting” the information for anyone
to come and see. It is the “server”

Open the serial monitor to see your device’s IP
address. This is what you type into a browser to

see the website hosted on your “server”

When the server sends information to your
browser (the client), it includes what type of

information and what language it will be sending

Checking to see if any browsers asked to see our
website. Client = TRUE if someone asked

The server will “serve”, or refresh the page, every
3 seconds, regardless of the readings

The last section of our code is the html of our
website

If no browsers opened, Client is NOT TRUE, so
return to top of the loop

IoT

26 HTML – Building a Website | CIJE

Full Example Code - Controlling Arduino from a webpage

#include <WiFi.h>

const char* ssid = "enter between quotes";

const char* password = "enter between quotes";

WiFiServer server(80);

int ledPin = 2;

void setup() {

 pinMode(ledPin, OUTPUT);

 Serial.begin(9600);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("WiFi connected");

 server.begin();

 Serial.print("Use this URL to connect: http://");

 Serial.print(WiFi.localIP()); Serial.println("/");

}

void loop() {

 // Check if a client has connected

 WiFiClient client = server.available();

 if (!client) {

 return; //go back to top of the void loop

 }

 // Read the URL line from the client (browser)

 String request = client.readString();

 Serial.println(request);

 if (request.indexOf("/on") > 0) {

 digitalWrite(ledPin, HIGH);

 }

 if (request.indexOf("/off") > 0) {

 digitalWrite(ledPin, LOW);

 }

//******* WEBSITE ***************

 String html = "HTTP/1.1 200 OK\r\n";

 html += "Content-type:text/html\r\nConnection: close\r\n\r\n";

 html += "<!DOCTYPE html>";

 html += "<html>";

 html += "<body>";

 html += "<h1> esp32 LED Control</ h1>";

 html += "<p>";

 html += "<button> ON</ button></ a>;";

 html += "<button> OFF</ button></ a>";

 html += "</ p>";

 html += "</ body>";

 html += "</ html> ";

 client.print(html);

 client.stop();

}

The “client”, or browser, sends a string of
information (the URL) back to your server

(esp32) when you click on a link

Checking to see if any browsers asked to see our
website

“indexOf” checks if a certain piece of information
is contained within the string (the URL) from the
browser. Here it’s checking if the word “on” is

the data. If it is, it will turn on (HIGH) pin 2.

Based on what you click on, the “buttons” on the
site will return different strings of data

If no browsers opened, return to top of the loop

