
 

2424242242 

  

CIJE-Tech High School 

IoT 
The Internet of Things 

 

CENTER FOR 
INITIATIVES IN 
JEWISH 
EDUCATION 



The Center for Initiatives in Jewish Education 

(CIJE) 

The Center for Initiatives in Jewish Education (CIJE) strengthens and enriches the quality of 
education in Jewish schools throughout the United States. CIJE is investing in our nation's future 
by providing beneficiary schools with cutting-edge technology, engaging curricula, and vital 
support so that students can acquire the skills they need to excel in our global society. Currently, 
CIJE has more than 225 beneficiary schools across the United States and programs which span 
grades K-12. CIJE's innovative programs are paving the way for the achievement and success of 
tomorrow's leaders and thinkers. 

CIJE-TECH STEM PROGRAM: AN OVERVIEW 

More than ten years ago, the Center for Initiatives in Jewish Education began the implementation 
of various STEM programs in elementary Jewish schools. The success of these programs brought 
about the initiation of the CIJE-Tech Principles in Engineering and Applied Engineering programs. 

Goals: 

The CIJE STEM education programs: 

• Provides a challenging and rigorous program of study focusing on the application of STEM 
subjects. 

• Offers courses and pathways for preparation in STEM fields and occupations. 

• Bridges and connects in-school and out-of-school learning opportunities. 

• Provides opportunities for student exploration of STEM related fields and careers. 

• Prepares students for successful college and university STEM education. 
 

To increase STEM learning, the CIJE-Tech programs include activities that improve student and 
teacher content knowledge and teacher pedagogical skills. Innovative strategies are used, 
including small group collaborative work and the use of hands-on activities and experiments to 
promote inquiry and curiosity. Learning is connected to the real world through an emphasis on 
the application of STEM subjects to everyday life, employment, and the surrounding 
environment. 

The CIJE high school programs were approved as "d" Laboratory Science Courses by the 
University of California in 2015. The second-year course is approved at the more 
challenging honors level.  



Center for Initiatives in Jewish Education 
 

President  Jason Cury 

Vice President, Education Programs Barbara Gereboff, Ph.D 

Vice President, Professional Development                Faigy Ravitz 

Director, Curriculum Development  Adam Jerozolim, M.E. 

Coordinator, Innovative Programs                              Orly Nadler, M.A. 

 

 

CIJE STEM Specialists: 

Christopher Auger-Dominguez Katherine Owuor, Ph,D. 

Dewain Clark, M.A. Joseph Saltzman 

Robert Jones David Seay, M.A. 

Yafa Lamm Barbara Sehgal, M.A. 

Aryeh Laufer  

 

© 2023 All Copyrights belong to Center for Initiatives in Jewish Education. No part of this book 
may be copied, duplicated, recorded, translated or stored in any database of any kind or by any 
other means. Any use of the material contained in this book is prohibited unless it is with the 
express permission of the publishers and authors. 

 
Center for Initiatives in Jewish Education 
148 39th Street, Suite A311, Brooklyn, NY, 11232 
info@theCIJE.org 
212-757-1500 Phone 
212-757-1565 Fax 
 

This program was produced with the generous support of the Center for Initiatives in Jewish 
Education (CIJE) as part of its ongoing quest to achieve excellence in education.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

“When we talk about the Internet of Things, it’s not just putting 
RFID tags on some dumb thing so we smart people know where 
that dumb thing is. It’s about embedding intelligence, so things 
become smarter and do more than they were proposed to do.”  

– Nicholas Negroponte 

 Founder, MIT’s Media Lab 

 

 

  



 

Table of Contents 
INTRODUCTION .................................................................................................. 8 

INTERNET NETWORKS ......................................................................................... 8 

STATIONS ............................................................................................................... 8 
SERVERS ................................................................................................................ 9 
CLIENTS ............................................................................................................... 10 
CLIENT SECURE ...................................................................................................... 10 

FINDING YOUR DEVICE ...................................................................................... 11 

INTERNET PROTOCOL (IP) ADDRESS ............................................................................ 11 
LOCAL AREA NETWORK (LAN) .................................................................................. 11 
SUMMARY ............................................................................................................ 12 
LIMITED IP ADDRESSES ............................................................................................ 13 

SECURITY .......................................................................................................... 14 

HOW IT WORKS ..................................................................................................... 14 
IOT AND SECURITY ................................................................................................. 15 
AWARENESS ......................................................................................................... 15 

NODEMCU ........................................................................................................ 17 

INTRODUCTION ...................................................................................................... 17 
NODEMCU VS ARDUINO UNO ................................................................................. 17 
CODING MICROCONTROLLERS WITH THE ARDUINO IDE .................................................. 18 
SETTING UP THE ARDUINO IDE FOR CODING ................................................................. 18 
PIN NUMBERS ....................................................................................................... 21 

HTTP ................................................................................................................. 22 

STANDARDIZING COMMUNICATION ............................................................................ 22 

HTML – BUILDING A WEBSITE ........................................................................... 23 

TAGS .................................................................................................................. 23 
WRITING HTML IN ARDUINO ................................................................................... 26 
DISPLAY ANALOGREAD DATA ON WEBSITE ................................................................... 26 
DISPLAY “BUTTON STATE” ON A WEBSITE .................................................................... 27 
TURNING ON A LIGHT WITH A “BUTTON”...................................................................... 27 
REFRESHING THE WEBSITE ........................................................................................ 28 
FULL EXAMPLE CODE - POSTING INFORMATION ON A WEBPAGE ........................................ 28 
FULL EXAMPLE CODE - CONTROLLING ARDUINO FROM A WEBPAGE .................................... 29 
 



  



IoT 

8 Introduction | CIJE 

 
 

Introduction 

The NodeMCU is a low-cost microcontroller, similar to Arduino, that has WiFi capability built in.  
The NodeMCU is a fully functional processor, and in most ways, superior to the Arduino Uno.  The 
WiFi capabilities of the NodeMCU comes from a compact WiFi capable chip called the esp8266.  
The esp8266 comes with its own digital and analog pins.  The NodeMCU breaks out these pins 
and adds features to make the chip more useable;  similar to the same way the Arduino UNO 
provides access to the Atmel chip in its center. 

Internet Networks 

Stations 

Devices that connect to WiFi network are called stations 
(STA). The source of the WiFi is provided by an access point 
(AP), that acts as a hub for one or more stations.  

 
 

An access point is usually integrated with a router to 
provide access to the internet. The access point is 
recognized by a SSID (Service Set Identifier), that essentially 
is the name of network you select when connecting a device 
(station) to the WiFi. 

When the ESP8266 acts as an access points for other 
stations, since it is not wired to the internet, it is called a 
soft access point (soft-AP). Therefore, we can connect other 
stations to the ESP8266 to make a localized network, but 
none of the devices on the network will receive internet 
access through the network. 

Devices that connect to a 
network are called stations 

An Access Point serves as a 
bridge for Stations to connect 

to the internet 

An Access Point that is not 
connected to the internet is 

called a Soft Access Point 



 IoT  

 

CIJE | Internet Networks  9 

 
 

 

 
 

Servers 

Servers provide functionality to other stations on a 
network.  They might provide pieces of information, 
news, access to email, movies, databases, etc.   A station 
(also referred to as a client) connects to servers to send 
and receive data. 

 

A device that connects 
stations, but cannot supply 
internet access to them, is 
called a Soft Access Point 

Servers are devices on a network 
that provide the functionality and 

data to the stations (clients). 



IoT 

10 Internet Networks | CIJE 

 
 

Clients 

Some stations on a network are referred to as 
clients.  Clients can access services provided by 
servers in order to send, receive and process data. 

 
 

Client Secure 

The Client Secure is a type of client, whereas the 
connection and data exchange with a server is done using 
a secure protocol.  This prevents anyone from having 
access to the information that is shared between the 
client and the server.  Secure applications have additional 
memory (and processing) overhead due to the need to run cryptography algorithms.  The 
stronger the certificate’s key, the more overhead is needed.  

 

A client is a device on a network that 
can access, send, and receive data 

from a server on the network 

Clients can interact with each 
other, and servers on the 

network, using encryption well. 



 IoT  

 

CIJE | Finding your Device  11 

 
 

 

Finding your Device 

 Internet Protocol (IP) address 

When computers and devices and servers 
are all linked together they form a network.  
Each device on a network has an address, 
called an Internet Protocol Address, or IP 
for short.  These addresses are how 
information is directed to the correct 
device. 

 

Being there are only a limited number of global IP addresses (there are more devices in the world 
than addresses), each network only gets one global IP.  Since your network can have multiple 
devices within it, like laptops and phones, the router’s job is to assign each device a local IP 
address, one that the outside world cannot see.  The router uses these local addresses to 
distribute the data to the correct device within the network.    

So all the data is sent to your networks global IP address.  The router then divides it up and 
distributes it accordingly using the internal local IP addresses. 

Local Area Network (LAN) 

It is also possible for a network of devices to exist independent of the internet.  This could 
happen, for instance, if the internet connected to your house went down.  The internal devices 
would still be able to communicate with each other using their local IP addresses, there would 
just be no global IP address associated with the router.  This might also be done purposely when 
a secure network (e.g. – computers within the stock exchange) or a fast network (e.g. – gaming) 
is required. 

Each device on a network is given a local address, 
called a local IP, to be used internally. 
The network as a whole also receives a single IP 
address, called a Public IP Address, for the rest of 
the world to locate them. 



IoT 

12 Finding your Device | CIJE 

 
 

Summary 

The internet Service Provider (ISP) provides an address for each network, referred to as the 
global IP.  Your local router provides a unique local IP address to each device.  Data is received 
by your router using the global IP address, and is then distributed internally using the local IP 
addresses.  

 

Each device can have two separate IP addresses, a local and a global.  A local IP is assigned from 
your local network router (i.e. – the box in the closet).  The global IP is assigned by your Internet 
Service Provider (ISP) (i.e. – Verizon, comcast, cable, etc.).  

So each device within a network has a local IP address, but shares a global IP address.  The 
devices are differentiated on the global network by the ports that they are assigned.  The port 
number is usually listed after the IP address. 

  

Local IP –>  192.168.0.3 
Global IP –>  173.2.464.54 

Local IP –>  192.168.0.4 
Global IP –>  173.2.464.54 

Server (ESPN.com) 
Global IP – 176.23.54.96 

Home Router 

Receives all data using the 
Global IP, and assigns local IP 

addresses to each device 

Server (Google.com) 
Global IP – 142.76.84.22 

 

Local IP –> 192.168.0.5 
Global IP –>  173.2.464.54 

Local IP –  192.168.0.3 
Global IP –  173.2.464.54 

Local IP –  192.168.0.4 
Global IP –  173.2.464.54 
 

Server (ESPN.com) 
Global IP – 176.23.54.96 

Server (Google.com) 
Global IP – 142.76.84.22 

 

Local IP –  192.168.0.5 
Global IP –  173.2.464.54:9 
 

Home Router 



 IoT  

 

CIJE | Finding your Device  13 

 
 

Limited IP addresses  

IP version 4 contains four 8-bit numbers (0-255).  This leads to a limited number of potential 
addresses 

 

=> 255 x 255 x 255 x 255 
=> 2554 

= 4,228,250,625 
(approx. 4.3 billion) 

Since 2016 there has already been more than 20 billion devices connected to the internet.  This 
includes every computer, laptop, smartphone, smartwatch, smart appliances, cars, airplanes, etc. 

 

To cope with this growth, IP version 6 was created with eight 16-bit numbers.  This leads to many 
more combinations of IP addresses. 



IoT 

14 Security | CIJE 

 
 

=> 216 x 216 x 216 x 216 x 216 x 216 x 216 x 216 
=> (216)8 
=> 2128 
= 340,282,366,920,938,000,000,000,000,000,000,000,000 

 

Security 

In general, when two devices talk over a network they encrypt their data, making it virtually 
impossible for someone to read that data, or infuse their own data into either device.    

 

The data remains encrypted the entire time it is being transferred from the sender to the 
receiver. 

How it works 

A device that wants to receive data creates a set of two keys.  Although different, they operate 
in tandem so that one key can “lock” the data while the other can “unlock” it.  The “locking” key 
is made public, so that anyone can encrypt, i.e. – lock, data they wish to send over.  They data is 



 IoT  

 

CIJE | Security  15 

 
 

then sent over a network.  Even if someone were to intercept the data, they would not be able 
to open it since the “unlock” key remains private.  Since the two keys are different, just having 
the public “locking” key will not help you create an “unlocking” key.  Once the data is received by 
the recipient, they can use the corresponding “unlock” key to decrypt the data. 

 

The above example merely touches on the basics of data encryption.  There are many more 
aspects of data encryption such as the size and complexity of the ‘keys’, the amount of keys, 
encrypting the encryption keys, private “locking” keys, etc.   

What is important to take away is that encryption involves constantly running complex 
algorithms on all data coming into and out of a device to simultaneously encrypt and decrypt 
data.  It also involves a complete and universally accepted standard for how to encrypt and 
decrypt data.  Every device on a network must be designed to use the same system and 
processes. 

IoT and Security 

With the sudden and quick growth of internet connected devices, there is a tremendous lack of 
security in IoT related devices.  The main reasons for this include:  

• Devices want to be able to talk to all other devices, and no standard protocol for security 
has been setup 

• To ease the process of connecting a device to a network, the cost and setup associated 
with security is often pushed to the side 

• To keep the costs and sizes of devices down, smaller and simpler processors are being 
used.  Encryption requires a significant amount of additional memory and processing to 
enable their cryptographic algorithms.  

Awareness 

We are living in a time where devices are being connected to the internet as unpreceded rates.  
This opens up new avenues for hackers to gain access to these devices an use them in nefarious 
ways. 



IoT 

16 Security | CIJE 

 
 

 

Some examples of insecure IoT devices being hacked include 

• In 2016, the largest DDoS (Distributed Denial of Service, where high amounts of devices 
attempt to contact a server at one time, overloading and shutting it down) attack was 
launched on service provider Dyn, using a swarm of IoT devices.  This lead to huge 
portions of the internet going down, including Twitter, the Guardian, Netflix, Reddit, and 
CNN.  The devices infected included things like digital cameras and DVR players.  

• IoT devices, like pacemakers and defibrillators, are used to monitor and control patients’ 
heart functions and prevent heart attacks.  A vulnerability occurred in the transmitter that 
reads the device’s data and remotely shares it with physicians. The FDA said hackers could 
control a device by accessing its transmitter.  Once in, they could deplete the battery or 
administer incorrect pacing or shocks. 

Often we find ourselves in situations where data encryption is either not yet available or not yet 
implemented.   Even in situations where the transfer of data is encrypted, the storage and end 
user for the data is not encrypted.  For example, when sending an email using Gmail, the transfer 
of the data is encrypted, but once the email resides on Gmail’s servers, it is no longer encrypted.  
This allows the owner of the server to have access to your data.  This is common in almost all 
large online tech companies, including amazon, google, etc.  While not necessarily a bad thing, it 
is important to keep in mind who has access to your data when you share it over the internet.  
And while we trust some large firms to keep our data secure, there are also many smaller 
companies that we entrust that do not have the resources to secure our data e.g. –  a small 
doctor’s office, small online retailer, online registration for local events, etc. 



 IoT  

 

CIJE | NodeMCU  17 

 
 

NodeMCU 
Introduction 

The NodeMCU is an open source Internet of Things (IoT) platform.  It contains a full 
microcontroller as well as a chip for connecting to the internet over WiFi.  The controller is similar 
in many aspects to the Arduino Uno.  The WiFi board is the esp8266, which can also be attached 
to the Arduino Uno as a separate shield.  

         +          =  

 

 

 

 

 

 

 

 

NodeMCU vs Arduino Uno 

 The NodeMCU Arduino 

analogRead 1 pin: from 0V – 3.3V 6 pins: from 0V – 5V 

digitalWrite voltage 3.3V 5V 

Digital pins 16 14 

Max Digital Pin Current  40mA 12mA 

analog Write 2 PWM pins: 13 and 16 6 PWM pins: 3, 5, 6, 9, 10, 11 

i2c pins Any.  Indicate SDA and SCL in code Integrated into A4 and A5 

analogWrite frequency 100Hz to 80KHz (default: 1 kHz) 490 Hz. Pins 5 and 6  980 Hz 

Flash Memory 32KB 4MB 

EEPROM  1KB 64KB 

Restarting Reset button ONLY RST button OR open serial monitor 

https://en.wikipedia.org/wiki/Internet_of_Things


IoT 

18 NodeMCU | CIJE 

 
 

Coding microcontrollers with the Arduino IDE 

The Arduino IDE is a versatile compiler, meaning it takes code written in one language and 
converts it into another.  In most cases it is taking high level code written in text and compiling it 
into binary coding for a microcontroller to use.  Although we generally code Arduino boards using 
the Arduino IDE, we can setup the Arduino IDE to compile code for a variety of microcontrollers.   

In this case we will setup the Arduino IDE to code the NodeMCU microcontroller.  The NodeMCU 
is based on the ESP8266 wifi chip.  The ESP8266 has been used as the core for a variety of 
microcontrollers. 

 

Setting up the Arduino IDE for coding 
We can use the familiar Arduino IDE to code the NodeMCU, even though it is not an Arduino board, we 
just have to install the board into the software before we begin. 

 

1. Go to File -> Preferences.  To 
install the NodeMCU board we 
need to first direct the Arduino 
IDE of where to look for the 
information. 

 

 

 
 

 
 

The following 6 steps must be performed to configure the Arduino IDE to code the NodeMCU 

 



 IoT  

 

CIJE | NodeMCU  19 

 
 

2. The following line adds the Arduino.esp8266 boards to the Arduino IDE software.   

http://arduino.esp8266.com/stable/package_esp8266com_index.json 

After you copy the line into the window, be sure to click ‘OK’ and not ‘close’ or ‘cancel’.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Select: 

Tools > Board: > Board Manager 

The Board Manager will 
have access to a number of 
additional Arduino boards; 
or boards that can be 
programmed with the 
Arduino IDE.  

 

 

 

http://arduino.esp8266.com/stable/package_esp8266com_index.json


IoT 

20 NodeMCU | CIJE 

 
 

4. Now we can search for the 
‘NodeMCU’ board and the 
appropraite boards will pop 
up.  Install “esp8266 by 
ESP8266 Communtiy”.  
These boards all have WiFi 
capability.   Install the latest 
version of the board 
software. 

 

 

 
 

5. We can now code the 
NodeMCU the same as we 
would a regular Arduino, 
but make sure to select the 
appropriate board and port 
from the tools list before 
uploading. 

 

 

 

 

 

 

 

6. Make sure the correct 
settings and port are 
selected.  You can increase 
the upload speed if you see 
you are not encountering any 
errors. 

 

  



 IoT  

 

CIJE | NodeMCU  21 

 
 

Pin numbers 

 The pin numbers printed on the circuit board do not correlate to the pin numbers used in your 
code.  The chart below is crucial in finding out what pin number to put in your code. 

  

For example, the pin in the top right corner of the image is shown as D0 on the NodeMCU board, 
however, when coding you should refer to the pin as D16.   

Note: The NodeMCU had two internal LEDs.  One on pin 2 (labeled D4) and one on pin 16 
(labeled D0).  The LED on pin 2 is actually part of the esp8266 boards attached to the NodeMCU. 

Example – The following code would blink the two on board LED’s in an alternating pattern: 

void setup() { 

  pinMode(2, OUTPUT); 

  pinMode(16, OUTPUT); 

} 

void loop() { 

  digitalWrite(2, HIGH); 

  digitalWrite(16, LOW); 

  delay(1000); 

  digitalWrite(2, LOW); 

  digitalWrite(16, HIGH); 

  delay(1000); 

}  

NodeMCU 
labeling 

Pin # in 
code 

D0 16 

D1 5 

D2 4 

D3 0 

D4 2 

D5 14 

D6 12 

D7 13 

D8 15 

D9 3 

D10 1 

SD2 9 

SD3 10 



IoT 

22 HTTP | CIJE 

 
 

HTTP 

Standardizing Communication 

HTTP stands for HyperText Transfer Protocol. This is a basis for data communication on the 
internet. The data communication starts with a request sent from a client (e.g. – your computer) 
and ends with the response received from a web server (e.g. – google.com).  Each time two 
computers communicate with each other using the HTTP protocol, a simple sequence is followed. 

1. A website URL starting with “http://” 
is entered in a web browser from 
a computer (client). The browser 
can be a Chrome, Firefox, 
Edge, Safari, Opera or 
anything else. 

2. Browser sends a request to 
the web server 
that hosts the website. 

3. The web server then returns a 
response as a HTML page or any 
other document format to the browser. 

4. Browser displays the response from the server to the user. 

The HTTP protocol requires a minimum of information to ensure consistent communication.  The 
HTTP request might contain: 

 

o The version of the HTTP protocol your computer is using 

o The name of the website it would like to see 

o The page within the website it’s looking for   

The HTTP response might contain: 

 

o Confirmation that the message was received 

o Time and date of the response 

o Language and protocol that the website is coded in 

o Followed by the actual content of the website 

https://www.webnots.com/types-of-web-hosting/
https://www.webnots.com/learn-html-basics/
https://img.webnots.com/2013/06/HTTP-Request-and-Response-Over-Web-1.png


 IoT  

 

CIJE | HTML – Building a Website  23 

 
 

HTML – Building a Website 

Tags 

Like Arduino and its loops, HTML uses sections indicated by tags between angle brackets < >.  The 
opening and closing tags are the same, except the closing tag has a forward slash (/) in it. 

 

<html> <head> <body> 

The entire code is contained within <html> tags, with two subsections, <head> and <body>.  The 
basic tag structure of a website looks like this: 

<html> 

    <head> 

    </head> 

    <body> 

    </body> 

</html> 

Things that do not appear on the page are placed between the <head> tags.  Things that are to 
be visible on the web page, or apply to the web page content, are placed between the <body> 
tags. 

  



IoT 

24 HTML – Building a Website | CIJE 

 
 

<title> 

The title tag, <title>, is placed in the <head> section of the HTML page and will display text in the 
top bar of the web browser. This tag is intended to display the web page title. 

<html> 

    <head> 

        <title> Center for Initiatives in Jewish Education </title> 

    </head> 

    <body> 

    </body> 

</html> 

 

<h1> <p> 

The text of the website goes between the <body> tags.  The format of the text is controlled using 
the headings tags, e.g.: <h1>, or the standard paragraph tag, <p>.  Any text typed between these 
tags will be formatted accordingly. 

Below is an example code demonstrating different heading and paragraph tags: 

 

Website Code 

For example: 
Code placed between the 
<h2> and </h2> tags will 

be formatted like a second 
level header 



 IoT  

 

CIJE | HTML – Building a Website  25 

 
 

An example of different format types used in a webpage: 

<!DOCTYPE html> 

<html> 

    <head> 

        <title> Testy Web Page </title> 

    </head> 

    <body> 

        <h1> Hello from Arduino! </h1> 

        <p> A web page from the Arduino server </p> 

    </body> 

</html> 

 

<a>   (links) 

The <a> tag is used to insert a link in your html webpage.  The link will update the URL, or address 
of the page you are on.  It can contain a completely new URL, and thus forward you to a new site, 
or simply amend your current URL, keeping you on the same page, but with a slightly different 
URL.

 

➢ All the information fits within the <a> tags 

➢ The href= portion contains what the link will update the URL to.  Note that this 
information is contained within the opening <a> tag. 

➢ The information between the tags is what is displayed on the site 

o To display a clickable button on the site, you can use the <button> tag, with the 
information between the tags the actual words that will appear on the button 

<a href=“https://wikipedia.org”> <button> click here for wikipedia </button> </a> 

 

` 



IoT 

26 HTML – Building a Website | CIJE 

 
 

Tags Summary 

 

Writing HTML in Arduino 

In order to host the server on your NodeMCU, we need to follow certain syntax developed by the 
esp8266 library.  All HTML coding must be within a client.println(“     ”); command. 

client.println("<!DOCTYPE html>"); //web page is made using HTML 

client.println("<html>"); 

  client.println("<head>"); 

       client.println("<title> Ethernet Tutorial </title>"); 

  client.println("</head>"); 

  client.println("<body>"); 

       client.println("<h1> A Webserver Tutorial </h1>"); 

       client.println("<h2> Observing State Of Switch </h2>"); 

       client.print("<h2> Switch is:  </h2>"); 

         if (digitalRead(8))   { 

         client.println("<h3> ON </h3>"); 

         } 

         else   { 

         client.println("<h3> OFF </h3>"); 

         } 

  client.println("</body>"); 

client.println("</html>"); 

Display analogRead Data on Website 

The following example, when placed in the <body> tags, will display the output from the 
analogRead pin on your website. 

int sensorReading = analogRead(A0); 

client.println("analog input is"); 

client.println(sensorReading); 

When using the Arduino IDE, All 
HTML coding must be within a 
client.println(“”); 

command 



 IoT  

 

CIJE | HTML – Building a Website  27 

 
 

Display “Button State” on a website 

The following code would print different text on the website based on a button press: 

NOTE: The HTML is incorrectly formatted as it’s not within client.println(“”); command 

<!DOCTYPE html> //web page is made using HTML 

<html> 

  <head> 

  </head> 

  <body> 

    <h1>A Webserver Tutorial </h1> 

    <h2>Observing State Of Switch</h2> 

    <h2>Switch is:  </h2> 

      if (digitalRead(8)== HIGH) { 

      <h3> ON </h3>  } 

      else  { 

      <h3> OFF </h3> } 

  </body> 

</html> 

 

Turning on a light with a “button” 

The following example, when placed in the 
<body> tags, will append the URL of your site 
with either an “LED=ON” or “LED=OFF” when one 
of the buttons are pushed 

 client.println("<html>"); 

   client.print("Led pin is now: "); 

     if (value == HIGH)  

       client.print("On");  
     else  

       client.print("Off"); 

   client.println("<br><br>"); 

   client.println("<a href=\"/LED=ON\"><button>Turn On </button></a>"); 

   client.println("<a href=\"/LED=OFF\"><button>Turn Off </button></a><br />"); 

 client.println("</html>"); 

The example code on the following pages will discuss how to operate the LED based on the 
updated URL suffixes. 

 

IMPORTANT: when coding with the nodeMCU, a backslash \ must precede 
any  “  within the <a> tags for Arduino 

` 



IoT 

28 HTML – Building a Website | CIJE 

 
 

 

Refreshing the website 

The following line of code can be inserted to indicate how often the website should update.  Note 
its location in the example code. 

 client.println("Refresh: 5");  // refresh the page every 5 sec 

Full Example Code - Posting information on a webpage 
 

#include <ESP8266WiFi.h> 

  

const char* ssid = "enter between quotes"; 

const char* password = "enter between quotes"; 

  

WiFiServer server(80); 

  

void setup() { 

 Serial.begin(9600); 

 WiFi.begin(ssid, password); 

  

  while (WiFi.status() != WL_CONNECTED) { 

    delay(500); 

    Serial.print("."); 

  } 

 Serial.println("WiFi connected"); 

 server.begin(); 

 Serial.println("Server started"); 

 Serial.print("The URL to connect: http://"); 

 Serial.print(WiFi.localIP()); 

 Serial.println("/"); 

} 

  

void loop() { 

  // Check if a client (browser) has connected 

  WiFiClient client = server.available(); 

  if (!client) { 

    return; 

  } 

   client.println("HTTP/1.1 200 OK"); 

   client.println("Content-Type: text/html"); 

   client.println("Refresh: 5");      

   client.println(""); //important 

   client.println("<!DOCTYPE HTML>"); 

    

   client.println("<html>"); 

   client.println("<head>"); 

   client.println("<title>CIJE Arduino Project</title>"); 

   client.println("</head>"); 

   client.println("<body>"); 

     int sensorReading = analogRead(A0); 

   client.println("analog input is"); 

   client.println(sensorReading); 

   client.println("</body>"); 

   client.println("</html>"); 

} 

 

  

Enter the username and password for the WiFi 
network you will be using 

If your network assigns a “port” to each device, 
enter the port your Arduino is on here. By 

default, all “servers” are set to 80 

While the Wifi is NOT connected, the Arduino will 
print dots on the screen until the connection is 

established 

The NodeMCU is “hosting” the information for 
anyone to come and see.  It is the “server” 

Open the serial monitor to see your device’s IP 
address.  This is what you type into a browser to 

see the website hosted on your “server” 

When the NodeMCU (the server) sends 
information to your browser (the client), it needs 

to tell it what type of information and what 
language it will be sending data in 

Checking to see if any browsers asked to see our 
website.  Client = TRUE if someone asked 

The server will “serve”, or refresh, every 5 sec 

The last section of our code is the html of our 
website 

If no browsers opened, Client is NOT TRUE, so 
return to top of the loop 



 IoT  

 

CIJE | HTML – Building a Website  29 

 
 

 

Full Example Code - Controlling Arduino from a webpage 
 

#include <ESP8266WiFi.h> 

const char* ssid = "enter between quotes"; 

const char* password = "enter between quotes"; 

WiFiServer server(80); //default server port is 80 

 

int value = LOW; 

int ledPin = 2; 

 

void setup() { 

  pinMode(ledPin, OUTPUT); 

 

  Serial.begin(9600); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) { 

    delay(500); 

    Serial.print("."); 

  } 

  Serial.println(""); 

  Serial.println("WiFi connected"); 

  server.begin(); 

  Serial.println("Server started"); 

 

  Serial.print("Use this URL to connect: http://"); 

  Serial.print(WiFi.localIP()); 

} 

 

void loop() { 

  // Check if a client has connected 

  WiFiClient client = server.available(); 

  if (!client) { 

    return;  //go back to top of the void loop 

  } 

 

  // Read the first line of data from the client 

  String request = client.readStringUntil('\r'); 

  Serial.println(request); 

  client.flush(); 

 

  if (request.indexOf("LED=ON") > 0) 

    value = HIGH; 

  if (request.indexOf("LED=OFF") > 0) 

    value = LOW; 

 

  digitalWrite(ledPin, value); 

 

  //******* WEBSITE *************** 

 

  client.println("HTTP/1.1 200 OK"); 

  client.println("Content-Type: text/html"); 

  client.println(""); //  do not forget this one 

  client.println("<!DOCTYPE HTML>"); 

  client.println("<html>"); 

  client.print("Led pin is now: "); 

  if (value == HIGH) { 

    client.print("On"); 

  } else { 

    client.print("Off"); 

  } 

  client.println("<br><br>"); 

  client.println("<a href=\"/LED=ON\"><button>Turn On </button></a>"); 

  client.println("<a href=\"/LED=OFF\"><button>Turn Off </button></a><br />"); 

  client.println("</html>"); 

} 

The “client”, or browser, sends a string of 
information back to your project when you click 

on a link in the webpage.  The information is 
stored in a variable called “request” 

Checking to see if any browsers asked to see our 
website 

“indexOf” checks if a certain piece of 
information is contained within the string from 

the browser.  In this case it’s checking if the 
words “LED=ON” are in the data being sent 
over.  And if they are, what place it is in the 
data.  We don’t care about the place, but a 

value >0 means it is in there somewhere 

Based on what you click on, the “buttons” on the 
site will return different strings of data 

 
If no browsers opened, return to top of the loop 


